

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

IOTA: (Integrable Optics Test Accelerator) Status and Plans

Vladimir Shiltsev, Fermilab

Workshop on "Plasma-based Accelerator Concepts for Colliders" LBNL, January 6-8, 2016

IOTA in the DOE OHEP GARD Program

- Recommendation 2. Construct the IOTA ring, and conduct experimental studies of highcurrent beam dynamics in integrable non-linear focusing systems. (p. 9, 18)
 - GARD thrust: Accelerator and Beam **Physics**
- Recommendation 3. Support a collaborative framework among laboratories and universities

that assures sufficient support in beam simulations and in beam instrumentation to address beam and particle stability including strong space charge forces. (p. 9, 17) - GARD thrust: Accelerator and Beam Physics				
	Intensity Frontier Accelerators	Hadron Colliders	e⁺e⁻ Colliders	
Current Efforts	PIP	LHC		
Current Lilores	PIP-II	HL-LHC	ILC	nt Subpanel
Next Steps	Multi-MW proton beam	Very high-energy <i>pp</i> collider	1 TeV class energy upgrade of ILC*	April 2015
Further Future Goals	Neutrino factory*	Higher-energy upgrade	Multi-TeV collider*	dependent on how physics unfolds

Accelerating Discovery

A Strategic Plan for Accelerator R&D in the U.S.

Overarching Motivation – R&D on Intensity Frontier Accelerators for HEP

- The future of Intensity Frontier HEP accelerators is in the beam control and mitigation of beam losses!
- To enable multi-MW beam power, losses must be kept well <0.1% at the record high intensity:
 - Need <0.06% for PIP-III (2.5 MW FNAL complex upgrade)
 - Present level ~3-5% in Booster and MI synchrotrons
 - (Very challenging after 50 years of development)
- Need to develop technology for
 - Space-charge countermeasures
 - Beam halo control
 - Single-particle and coherent beam stability

IOTA Physics Motivation

- To explore two innovative ideas:
 - Integrable Optics
 - With strongly nonlinear magnets
 - With specially shaped electron beams in electron lenses
 - Space Charge Compensation
 - With ~"Gaussian" electron lenses
 - With neutralizing "electron columns"
- Both work in simulations → to test them experimentally, we are building the <u>Integrable Optics Test Accelerator (IOTA)</u>
 - a machine for proof-of-principle R&D
 - can operate with either e- or p+ up to 150 MeV/c momentum
 - large aperture,
 - significant flexibility of the beam optics lattice
 - precise control of the optics quality and stability
 - set up for very high intensity operation (with protons)

IOTA @ Fermilab Accelerator Science and Technology

50 MeV ephotoinjector

5

facility

spectrometer and e- dump

150+ MeV e-

CM₂

2.5 MeV p+/H-

150 MeV e-2.5 MeV p+

Fermilab

Integrable Optics with Non-linear Magnets

- Additional integrals of transverse motion possible:
 - Special NL magnets
- \rightarrow
- Special optics of the ring (next slide)
- Special longitudinal shape of the magnets (gap vs Z)
- Makes particle dynamics stable with very large tunespread
 - Danilov, Nagaitsev, PRSTAB 13, 084002 (2010)

IOTA Optics with Two Nonlinear Lenses

Nonlinear Magnet for Integrable IOTA

Joint effort with RadiaBeam Technologies (Phase I and II

SBIR)

Short prototype built in Phase I

1.8-m long magnet to be delivered in 2016

IOTA Research Staging – Phase I (with e-)

- The magnet quality, optics stability, instrumentation system and optics measurement techniques must be of the highest standards in order to meet the requirements for integrable optics
 - 1% or better measurement and control of β -function
 - and 0.001 or better control of betatron phase
- This is why Phase I needs pencil e beams as such optics parameters are not immediately reachable in a small ring operating with protons

IOTA Parameters

Nominal momentum	e:: 150 MeV/c p+: 70 MeV/c
Nominal intensity	e ⁻ : 1×10 ⁹ , p+: 1×10 ¹¹
Circumference	40 m
Bending dipole field	0.7 T
Beam pipe aperture	50 mm dia.
Maximum b-function (x,y)	12, 5 m
Momentum compaction	0.02 ÷ 0.1
Betatron tune (integer)	3 ÷ 5
Natural chromaticity	-5 ÷ -10
Transverse emittance r.m.s.	e ⁻ : 0.04 μm p+: 2μm
SR damping time	0.6s (5×10 ⁶ turns)
RF V,f,q	e ⁻ : 1 kV, 30 MHz, 4
Synchrotron tune	e-: 0.002 ÷ 0.005
Bunch length, momentum spread	e ⁻ : 12 cm, 1.4×10 ⁻⁴

Electron Lenses: Space-Charge Compensation

IOTA Electron Lens

- Capitalize on the Tevatron and RHIC experience, LARP work
- Re-use Tevatron Electron Lens components:
 - Removed TEL-2 gun & collector from Tev tunnel
 - Refurbishment in progress
- Computer modeling for IOTA in progress

150-MeV circulating

beam

Progress with IOTA Electron Injector

Fermilab

20MeV e beam through FAST injector

NB: IOTA e- Injector = ILC source

- Example of 3000 pulse-train at a charge of Q_{ρ} =0.5nC (operating at 1Hz).
 - * we are not able to demonstrate higher Q_{ρ} due to the commissioning safety limit
- 5Hz operation of the laser and 1.3 GHz Gun has been established separately.

FAST is unique resource for any (plasma) 1 TeV ILC upgrade R&D

	Now	ILC
Bunch charge	0.5 nC *	3.2 nC
Bunch train	1 ms	1 ms
Bunches/train	3000	3000
Rep.rate	1 Hz *	5 Hz

2015 Progress on IOTA Proton Injector

2.5 MeV Proton RFQ re-commissioning began:

- Ion source separated from RFQ in preparation for instrumentation.
- All parts requisitioned for refurbishment
- On track to re-commission in Q2FY2016

- Reconnected 325 MHz klystron to waveguide and coax.
- Continuing reconnection to RFQ
- On track to deliver beam in Q2-Q3 of FY2016

IOTA Ring: ~50% of All Components in Hand

High Energy Beamline and Enclosure (FY16)

IOTA Construction and Research Timeline

	Electron Injector	Proton Injector	IOTA Ring
FY15	20 MeV e- commiss'd beam tests	Re-assembly began @MDB	50% IOTA parts ready
FY16	50 MeV e- commiss'd beam tests	50 keV p+ commiss'd	IOTA parts 80+% ready
FY17	150-300 MeV e- beam commissioning/tests *	2.5 MeV p+ commiss'd beam tests @ MDB	IOTA fully installed first beam ? *
FY18	e- injector for IOTA+ other research	<pre>p+ RFQ moved from MDB to FAST *</pre>	IOTA commiss'd with e-Research starts (NL IO)
FY19	e- injector for IOTA+ other research	2.5 MeV p+ commiss'd beam tests	IOTA research with e- IOTA commiss'd with p+
FY20	e- injector for IOTA + other research	p+ injector for IOTA	IOTA research with p+*

contingent on \$\$: FY17-20 - under current budget scenario, explore options to accelerate start of research by 1 year

IOTA Scientific Research Collaboration

24 Partners:

 ANL, Berkeley, BNL, BINP, CERN, Chicago, Colorado State, IAP, FNAL, Frankfurt, JINR, Kansas, LANL, LBNL, ORNL, Maryland, Michigan State, Northern Illinois, Oxford, RadiaBeam Technologies, RadiaSoft LLC, Tech-X, Tennessee, Vanderbilt

FOCUSED WORKSHOP ON SCIENTIFIC OPPORTUNITIES IN IOTA

https://indico.fnal.gov/conferenceDisplay.py?confld=10547

28-29 April 2015 Wilson Hall US/Central timezone

- By invitation only: 40 participants, 30 not from Fermilab
 - White Paper drafted
- ~25 presentations
- Three Working Groups

Nonlinear Dynamics (ND) and Space Charge (SC)

KISHEK, Rami (CHAIR) SHILTSEV, Vladimir (CO-CHAIR)

Optical Stochastic Cooling (OSC) and Single Electron Quantum Optics (SEQO)

ZHOLENTS, Alexander (CHAIR, OSC) KIM, Kwang-Je (CO-CHAIR, OSC and SEQO) SHAFTAN, Timur (CO-CHAIR, SEQO)

Emittance Exchange (EE), Radiation (R) and Laser-Beam Shaping (LBS)

WURTELE, Jonathan (CHAIR) ders Wo THANGARAJ, Jayakar (CO-CHAIR)

IOTA Research: Beam Physics Drivers

- Nonlinear Integrable Optics Experimental demonstration of Nonlinear Optics lattice in a practical accelerator
- 2. Space Charge Compensation Suppression of SC-related effects in high intensity circular accelerators

 Neplinear Integrable Option

 GARD
 - Nonlinear Integrable Optics
 - Electron lenses
 - Electron columns
 - Circular betatron modes
- 3. Beam collimation Technology development for hollow electron beam collimation

under discussion by collaborators:

- Optical Stochastic Cooling Proof-of-principle demonstration
- **Electron Cooling –** Advanced techniques

Collaborators

Collaborators

- Laser-Plasma Accelerator Demonstration of injection into synchrotron
- Quantum Physics Localization of single electron wave function

(Dream of) LPWA e-Injector for p+ IOTA Tune Up

- Given expected sensitivity of the Integrable Optics and Space-Charge Compensation to the lattice imperfections, it is very desirable to have an option of <u>reverse e- injection</u> to tuneup IOTA optics for record high tune-shift operation with 70 MeV/c protons
- Need compact 70 MeV electron source e.g., LPWA

Laser Wakefield Acceleration Injector for IOTA?

Main Specs:

e- Energy	70 MeV	
Bunch charge	(1/4 - 1/2) nC	
Rep.rate	~0.1 Hz	
E spread dE/E	< 0.2%	
Emittance, n-rms	< 100 µm	

Important Considerations:

- Compact (<1 m)
- Injection (matching, on orbit?, kicker?)
- Cost (low)
- Reliability and stability (high)

This would be the first occurrence of the laser wakefield method used as an electron source for injection into an operational accelerator.

Fermilab

Workshop 01/06/2016

Summary

- IOTA Ring at the FAST is (going to be) the leading Accelerator R&D facility for the Intensity Frontier HEP
 - OHEP GARD thrust: Accelerator and Beam Physics
- Progressing construction, commissioning, research :
 - e- injector operational @ 20MeV (50 MeV in 2016, >150MeV in 2017)
 - >50% of IOTA parts in hand, 1st beam in IOTA ca. 2017
 - p+ injector readiness in ca. 2019 (depends on support)
 - Integrable Optics and Space Charge Compensation experiments are being prepared, many collaborators (you're welcome!)
- IOTA is valuable resource for the future LC community:
 - ILC-type electron source (up to 300 MeV)
 - (Aspiration for) 70 MeV PWFA e- injector after 2020

Back up slides

IOTA Layout

Nonlinear Integrable Optics with Laplacian Potential

- 1 Start with a round axially-symmetric *linear* lattice (FOFO) with the element of periodicity consisting of
 - a. Drift L
 - b. Axially-symmetric focusing block "T-insert" with phase advance $n \times \pi$

1 Add special nonlinear potential V(x,y,s) in the drift such that $\Delta V(x,y,s) \approx \Delta V(x,y) = 0$

RFQ Design and Specifications

Pulsed 4-vane RFQ (specs):

Table 1. Initial Specifications for the RFQ Design

	\
Input energy	50 keV
Output energy	2.5 MeV
Frequency, MHz	325
Accelerating beam current, mA	40
Peak surface field, kV/cm	<330
Acceleration efficiency,%	>95
Pulsed power losses in copper, kW	<450
Duty factor, %	1
Total length of vanes	302.428
	cm
Average bore radius	3.4 mm
Input rms transverse emittance,	0.25
normalized π mm mrad	
Transverse emittance growth factor	<1.1
Longitudinal rms emittance, π keV deg	<150
Separation between operating and	>4 MHz
nearest dipole modes	

HINS Parameters for IOTA

Table 1: HINS Parameters for IOTA

Parameter	Value	Unit	matched to IOTA
Particle type	proton		momentum, β=.073
Kinetic Energy	(2.5)	MeV	
Momentum	68.5	MeV/c	Demonstrated for 1 ms
eta	.073	-	pulses = our baseline.
Rigidity	.23	T-m	Should go to >40 mA for
RF structure	325	MHz	short pulses.
Current	(8)	mA	Short pulses.
Circumference	39.97	m	
Total Protons	9.1×10^{10}	-	
RMS Emittance	(4)	π -mm-mrad	hig anguah san da
(un-normalized)			big enough, can do
Tune shift	(51×B)←	-	multiple injections if
Pulse rate	<1	Hz	needed later
Pulse length	1.77	μ sec	

Quasi-Integrable System

Build V with Octupoles

$$V(x, y, s) = \frac{\kappa}{\beta(s)^3} \left(\frac{x^4}{4} + \frac{y^4}{4} - \frac{3x^2y^2}{2} \right)$$

$$U = \kappa \left(\frac{x_N^4}{4} + \frac{y_N^4}{4} - \frac{3y_N^2 x_N^2}{2} \right)$$

$$H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + \frac{k}{4}(x^4 + y^4 - 6x^2y^2)$$

- Only one integral of motion H
- Tune spread limited to ~12% of Q₀

Quasi-Integrable System with Octupoles

 While dynamic aperture is limited, the attainable tune spread is large ~0.03 – compare to 0.001 created by LHC octupoles

Single Particle Dynamics in Integrable Optics

IOTA Staging – Phase I

Phase I will concentrate on the academic aspect of single-particle motion stability using e-beams

- Achieve large nonlinear tune shift/spread without degradation of dynamic aperture by "painting" the accelerator aperture with a "pencil" beam
- Suppress strong lattice resonances = cross the integer resonance by part of the beam without intensity loss
- Investigate stability of nonlinear systems to perturbations, develop practical designs of nonlinear magnets
- The measure of success will be the achievement of high nonlinear tune shift = 0.25

Experimental Procedure

 Two kickers, horizontal and vertical, place particles at arbitrary points in phase space

 Measure beam position on every turn to create a Poincare map

0.5

- Can control the strength on the nonlinearity
- Final goal measure dependence of betatron frequency on amplitude

